Swen Deobald
29. Juni 2020

Predictive Analytics

Der Begriff Predictive Analytics bedeutet übersetzt vorausschauende Analysen. Das ist ein Vorgehen, bei dem ein System künftige Ereignisse mithilfe historischer Daten ermittelt. Diese Daten wertet es mit statistischen Algorithmen und Techniken des maschinellen Lernens aus. Das Ziel ist es ähnlich wie beim Wetterbericht, eine bestmögliche Einschätzung zu realistischen Zukunfts-Szenarien zu liefern.

Predictive Analytics – Geschichte & aktuelle Fortschritte

Immer mehr Unternehmen wenden sich predictive Analytics zu, um ihren Gewinn und ihren Wettbewerbsvorteil zu steigern. Warum gerade jetzt?

  • Unternehmen verfügen über Big Data
  • Schnellere und billigere Computer
  • Leichter zu bedienende Software
  • Schwierigere wirtschaftliche Bedingungen und die Notwendigkeit einer Wettbewerbsdifferenzierung

Mit der zunehmenden Verbreitung von interaktiver und einfach zu bedienender Software ist die prädiktive Analyse nicht mehr nur eine Domäne von Mathematikern und Statistikern. Auch Wirtschaftsanalytiker und Branchenexperten nutzen diese Technologien.

Unser E-Book zum Thema SAP Analytics

E-Book: SAP Analytics | Effizienz im Unternehmen steigern

Wieso sollten Unternehmen sich um die Analyse Ihrer Daten kümmern, welche Anwendungsbereiche gibt es und welche Tools eignen sich dafür? Finden Sie es heraus.

Warum ist Predictive Analytics wichtig?

Unternehmen wenden sich Predictive Analytics zu, um schwierige Probleme zu lösen und neue Möglichkeiten zu entdecken. Häufige Anwendungen sind unter anderem:

Betrug aufdecken

Die Kombination mehrerer Analysemethoden (Fraud Detection) kann die Mustererkennung verbessern und kriminelles Verhalten verhindern. Da die Cybersicherheit zu einem wachsenden Problem wird, untersucht die Hochleistungs-Verhaltensanalyse alle Aktionen in einem Netzwerk in Echtzeit. Dadurch können Anomalien erkannt werden, die auf Betrug, Zero-Day-Schwachstellen und fortgeschrittene, anhaltende Bedrohungen hinweisen können.

Optimierung von Marketingkampagnen

Predictive Analytics werden verwendet, um Kundenreaktionen oder Käufe zu ermitteln und Cross-Selling-Möglichkeiten zu fördern. Predictive Models helfen Unternehmen, ihre profitabelsten Kunden zu gewinnen, zu behalten und zu vergrößern.

Verbesserung der Betriebsabläufe

Viele Unternehmen verwenden prädiktive Modelle zur Prognose von Beständen und zur Verwaltung von Ressourcen. Fluggesellschaften verwenden predictive Analytics, um Ticketpreise festzulegen. Hotels versuchen, die Anzahl der Gäste für eine bestimmte Nacht vorherzusagen, um die Auslastung zu maximieren und die Einnahmen zu steigern. Mit Hilfe von Predictive Analytics können Unternehmen effizienter arbeiten. Beispielsweise verschickt Amazon bereits Pakete bevor sie wirklich bestellt wurden.

Verringerung des Risikos

Kredit-Scores werden verwendet, um die Wahrscheinlichkeit der Zahlungsunfähigkeit eines Käufers zu beurteilen. Sie sind ein bekanntes Beispiel für Predictive Analytics. Ein Kredit-Score ist eine Zahl, die durch ein Vorhersagemodell generiert wird, das alle für die Kreditwürdigkeit einer Person oder eines Unternehmens relevanten Daten enthält. Andere risikobezogene Verwendungen umfassen Versicherungsansprüche und Inkasso.

Wer benutzt Predictive Analytics?

Jede Branche kann predictive Analytics nutzen, um Risiken zu reduzieren, den Betrieb zu optimieren und den Umsatz zu steigern. Hier sind einige Beispiele.

Bank- und Finanzdienstleistungen

Die Finanzbranche hat sich seit langem für die vorausschauende Analyse entschieden, um

  • Betrug zu erkennen und zu reduzieren
  • das Kreditrisiko zu messen
  • Cross-Selling/Up-Selling-Möglichkeiten zu maximieren
  • wertvolle Kunden zu behalten

Die Commonwealth Bank verwendet Analysen, um die Wahrscheinlichkeit von Betrugsaktivitäten für eine bestimmte Transaktion vorherzusagen, bevor diese autorisiert wird – innerhalb von 40 Millisekunden nach der Transaktionsinitiierung.

predictive analytics

Einzelhandel

Eine inzwischen berüchtigte Studie zeigt, dass Männer, die Windeln kaufen, oft gleichzeitig Bier kaufen. Auch wenn die Studie in der Predictive Analytics Szene mittlerweile mit Humor genommen wird, verwenden Einzelhändler seitdem überall Predictive Analytics für die Warenplanung und Preisoptimierung. Dadurch können sie die Wirksamkeit von Werbeveranstaltungen analysieren und feststellen, welche Angebote für die Verbraucher am besten geeignet sind.

Öl, Gas und Versorgungsunternehmen

Die Energieindustrie hat sich die vorausschauende Analyse mit Nachdruck zu eigen gemacht für:

  • die Vorhersage von Geräteausfällen
  • die Vorhersage des zukünftigen Ressourcenbedarfs
  • die Minderung von Sicherheits- und Zuverlässigkeitsrisiken
  • die Verbesserung der Gesamtleistung

Das Salt River Project ist das zweitgrößte öffentliche Energieversorgungsunternehmen der USA und einer der größten Wasserversorger Arizonas. Die Analyse von Maschinensensordaten sagt voraus, wann stromerzeugende Turbinen gewartet werden müssen.

Regierungen und der öffentliche Sektor

Die Regierungen waren die Hauptakteure bei der Weiterentwicklung der Computertechnologien. Das US Census Bureau analysiert seit Jahrzehnten Daten, um die Bevölkerungsentwicklung zu verstehen. Die Regierungen setzen heute – wie viele andere Branchen auch – prädiktive Analysen ein, um Service und Leistung zu verbessern, Betrug zu verhindern und das Verbraucherverhalten besser zu verstehen. Sie setzen auch prädiktive Analysen ein, um die Cybersicherheit zu verbessern.

Predictive Analytics

Manufaktur

Für die Hersteller ist es sehr wichtig, Faktoren zu identifizieren, die zu Qualitätseinbußen und Produktionsausfällen führen. Dadurch können Teile, Serviceressourcen und Vertrieb optimiert werden. Lenovo ist nur ein Hersteller, der Predictive Analytics zum besseren Verständnis von Garantieansprüchen eingesetzt hat – eine Initiative, die zu einer 10 bis 15-prozentigen Reduzierung der Garantiekosten führte.

Was brauchen Sie, um mit Predictive Analytics zu beginnen?

Um mit Predictive Analytics zu beginnen, müssen Sie zunächst Ihre Herausforderungen identifizieren. Was möchten Sie auf der Grundlage der Vergangenheit über die Zukunft wissen? Was möchten Sie verstehen und vorhersagen? Sie werden sich auch überlegen müssen, was mit den Vorhersagen geschehen soll. Welche Entscheidungen werden durch die Erkenntnisse ersichtlich? Welche Maßnahmen werden ergriffen?

Außerdem werden Sie Daten benötigen. In der heutigen Welt bedeutet dies: Daten von vielen Orten. Daten von Transaktionssystemen, von Sensoren gesammelte Daten, Informationen von Dritten, Notizen des Callcenters, Weblogs usw. Sie brauchen einen Datenexperten oder jemanden mit Erfahrung im Datenmanagement, der Ihnen hilft, die Daten zu bereinigen und für die Analyse vorzubereiten. Dabei kann auch ein Data Government behilflich sein. Zur Vorbereitung der Daten für eine vorausschauende Modellierungsübung ist auch jemand erforderlich, der sowohl die Daten als auch das Geschäftsproblem versteht. Wie Sie Ihr Ziel definieren, ist entscheidend dafür, wie Sie das Ergebnis interpretieren können. Unsere Experten greifen Ihnen dabei unter die Arme. Die Datenvorbereitung gilt als einer der zeitaufwändigsten Aspekte des Analyseprozesses. Seien Sie also darauf vorbereitet!

Webinar: Supply Chain – Lieferketten optimieren mit Analytics

Die Anforderungen an Lieferketten werden in Zeiten der Globalisierung immer komplexer. Neue Technologien und immer weiter steigende Datenmengen treiben die digitale Transformation an. Auch bei Lieferketten spielt die Digitalisierung zunehmend eine essenzielle Rolle. Nutzen Sie Ihre Datenmengen bereits effektiv? 

Danach beginnt der Aufbau des Vorhersagemodells. Eine immer einfacher zu bedienende Software bedeutet, dass immer mehr Menschen analytische Modelle erstellen können. Aber Sie brauchen wahrscheinlich immer noch einen Datenanalytiker, der Ihnen hilft, Ihre Modelle zu verfeinern und den besten Performer zu finden. Und dann brauchen Sie vielleicht jemanden in der IT-Abteilung, der Ihnen bei der Bereitstellung Ihrer Modelle helfen kann. Das bedeutet, dass Sie die Modelle auf den von Ihnen ausgewählten Daten anwenden müssen – und genau dort erhalten Sie Ihre Ergebnisse.

Predictive Analytics ist Teamsache!

Die vorausschauende Modellierung erfordert einen Teamansatz. Sie brauchen Leute, die das zu lösende Geschäftsproblem verstehen. Jemand, der weiß, wie man Daten für die Analyse vorbereitet. Jemand, der die Modelle aufbauen und verfeinern kann. Jemand in der IT-Abteilung, der sicherstellt, dass Sie über die richtige Analyseinfrastruktur für die Modellerstellung und -bereitstellung verfügen. Und ein leitender Sponsor kann Ihnen helfen, Ihre analytischen Hoffnungen zu verwirklichen.

Wir können Sie gerne dabei unterstützen, Predictive Analytics in Ihr Unternehmen zu integrieren. Dazu bieten wir Schulungen & Workshops an, um Ihre Mitarbeiter weiterzubilden. Allerdings können Sie auch eine komplette Lösung bei uns erwerben oder wir senden Ihnen einen unserer Experten. Kontaktieren Sie uns unverbindlich, wenn Sie weitere Fragen haben!

FAQ Predictive Analytics

Was sind Predictive Analytics?

Der Begriff Predictive Analytics bedeutet übersetzt vorausschauende Analysen. Das ist ein Vorgehen, bei dem ein System künftige Ereignisse mithilfe historischer Daten ermittelt. Diese Daten wertet es mit statistischen Algorithmen und Techniken des maschinellen Lernens aus. Das Ziel ist es ähnlich wie beim Wetterbericht, eine bestmögliche Einschätzung zu realistischen Zukunfts-Szenarien zu liefern.

Wie kann mir Predictive Analytics helfen?

Unternehmen wenden sich Predictive Analytics zu, um schwierige Probleme zu lösen und neue Möglichkeiten zu entdecken. Vor allem soll dadurch Betrug aufgedeckt werden und Marketingkampagnen optimiert werden. Zudem werden Betriebsabläufe und Risiken im Unternehmen verringert.

Wer nutzt Predictive Analytics?

Jede Branche kann predictive Analytics nutzen, um Risiken zu reduzieren, den Betrieb zu optimieren und den Umsatz zu steigern. So nutzen bspw. bereits Unternehmen in der Finanzbranche, im Einzelhandel oder Versorgungsunternehmen Predictive Analytics.

Websession Predictive Analytics

Sie möchten vorausschauende Analysen nutzen & haben Fragen zu Vorgehen, Anwendungen oder Tools? In einer kostenlosen Websession sprechen wir gerne über Ihre Herausforderungen.

Swen Deobald

Swen Deobald

Mein Name ist Swen Deobald und ich bin begeisterter SAP Analytics Berater. Als Fachbereichsleiter von Compamind unterstütze ich Sie mit meinem Team bei allen Fragen rund um SAP Analytics, Business Warehouse, BusinessObjects und der SAP Analytics Cloud.

Sie haben Fragen? Kontaktieren Sie mich!


Das könnte Sie auch interessieren:

SAP Analytics
SAP Predictive Analytics

Das könnte Sie auch interessieren

Predictive Maintenance (PdM) ist eine Wartung, die die Leistung und den Zustand von Geräten während des normalen Betriebs überwacht, um die Wahrscheinlichkeit von Ausfällen zu verringern. Auch bekannt als zustandsorientierte Instandhaltung, wird die vorausschauende Instandhaltung seit den 90er Jahren in […]

weiterlesen

In der COVID-19 Pandemie fliegen einem die Zahlen in den Nachrichten nur so um die Ohren. So und so viele Menschen sind in ganz Deutschland infiziert, gestorben und auch ein großer Teil davon wieder genesen worden. Doch was hat die […]

weiterlesen

Sie träumen von einem automatisierten Reporting im HR-Bereich? Sie möchten Fragen, wie z. B. „Wie hoch ist die Zufriedenheit meiner Mitarbeiter? Wie viele Mitarbeiter benötige ich eigentlich nächstes Jahr und wie viele Bewerbungen gehen dafür rein?" mit einem Klick beantworten? […]

weiterlesen

Unsere Produkte zu Predictive Analytics

Mit diesem Workshop erhalten Sie einen Einblick in die besten Analytics-Tools am Markt. Gemeinsam vergleichen wir eine Auswahl an Tools auf technischer Ebene und finden heraus, welches die beste Lösung für Ihre Anforderungen ist.

Mehr Informationen

Mit dem HR Analytics Cockpit erhalten Personalverantwortliche auf Knopfdruck einen umfassenden und systemübergreifenden Einblick in alle Personalkennzahlen. Das entstehende Verständnis für tiefere Zusammenhänge kann dann für strategische Planungen und schnelle Entscheidungsfindungen genutzt werden.

Mehr Informationen

Werden Sie mit Analytics Stories zum Experten für Ihre Daten. Echzeit- und vorausschauende Analysen inklusive!

Mehr Informationen

Schreiben Sie einen Kommentar

Bitte füllen Sie alle mit * gekennzeichneten Felder aus. Ihre E-Mail Adresse wird nicht veröffentlicht.





Angebot anfordern
Expert Session
Preisliste anfordern